§ 1065.365

§ 1065.365 Nonmethane cutter penetration fractions.

- (a) Scope and frequency. If you use a FID analyzer and a nonmethane cutter (NMC) to measure methane (CH₄), determine the nonmethane cutter's penetration fractions of methane, PF_{CH4} , and ethane, PF_{C2H6} . Perform this verification after installing the nonmethane cutter. Repeat verification within 185 days of testing to verify that the catalytic activity of the cutter has not deteriorated. Note that because nonmethane cutters can deteriorate rapidly and without warning if they are operated outside of certain ranges of gas concentrations and outside of certain temperature ranges, good engineering judgment may dictate that you determine a nonmethane cutter's penetration fractions more frequently.
- (b) Measurement principles. A nonmethane cutter is a heated catalyst that removes nonmethane hydrocarbons from the exhaust stream before the FID analyzer measures the remaining hydrocarbon concentration. An ideal nonmethane cutter would have PF_{CH4} of 1.000, and the penetration fraction for all other hydrocarbons would be 0.000, as represented by PF_{C2H6} . The emission calculations in § 1065.660 use this section's measured values of PF_{CH4} and PF_{C2H6} to account for less than ideal NMC performance.
- (c) System requirements. We do not limit NMC penetration fractions to a certain range. However, we recommend that you optimize a nonmethane cutter by adjusting its temperature to achieve $PF_{CH4} > 0.95$ and $PF_{C2H6} < 0.02$ as determined by paragraphs (d) and (e) of this section, as applicable. If we use a nonmethane cutter for testing, it will meet this recommendation. If adjusting NMC temperature does not result in achieving both of these specifications simultaneously, we recommend that you replace the catalyst material.

Use the most recently determined penetration values from this section to calculate HC emissions according to § 1065.660 and § 1065.665 as applicable.

(d) Procedure for a FID calibrated with the NMC. If your FID arrangement is such that a FID is always calibrated to measure CH₄ with the NMC, then span that FID with the NMC cutter using a CH_4 span gas, set that FID's CH_4 penetration fraction, PF_{CH4} , equal to 1.0 for all emission calculations, and determine its ethane (C_2H_6) penetration fraction, PF_{C2H6} . as follows:

- (1) Select a CH $_4$ gas mixture and a C $_2$ H $_6$ analytical gas mixture and ensure that both mixtures meet the specifications of §1065.750. Select a CH $_4$ concentration that you would use for spanning the FID during emission testing and select a C $_2$ H $_6$ concentration that is typical of the peak NMHC concentration expected at the hydrocarbon standard or equal to THC analyzer's span value.
- (2) Start, operate, and optimize the nonmethane cutter according to the manufacturer's instructions, including any temperature optimization.
- (3) Confirm that the FID analyzer meets all the specifications of § 1065.360.
- (4) Start and operate the FID analyzer according to the manufacturer's instructions.
- (5) Zero and span the FID with the cutter and use CH_4 span gas to span the FID with the cutter. Note that you must span the FID on a C_1 basis. For example, if your span gas has a CH_4 reference value of 100 μ /mol, the correct FID response to that span gas is 100 μ /mol because there is one carbon atom per CH_4 molecule.
- (6) Introduce the C_2H_6 analytical gas mixture upstream of the nonmethane cutter.
- (7) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the nonmethane cutter and to account for the analyzer's response.
- (8) While the analyzer measures a stable concentration, record 30 seconds of sampled data. Calculate the arithmetic mean of these data points.
- (9) Divide the mean by the reference value of C_2H_6 , converted to a C_1 basis. The result is the C_2H_6 penetration fraction, PF_{C2H6} . Use this penetration fraction and the CH_4 penetration fraction, which is set equal to 1.0, in emission calculations according to §1065.660 or §1065.665, as applicable.
- (e) Procedure for a FID calibrated by bypassing the NMC. If you use a FID with an NMC that is calibrated by bypassing the NMC, determine penetration fractions as follows:

Environmental Protection Agency

- (1) Select CH_4 and C_2H_6 analytical gas mixtures that meet the specifications of §1065.750 with the CH_4 concentration typical of its peak concentration expected at the hydrocarbon standard and the C_2H_6 concentration typical of the peak total hydrocarbon (THC) concentration expected at the hydrocarbon standard or the THC analyzer span value.
- (2) Start and operate the nonmethane cutter according to the manufacturer's instructions, including any temperature optimization.
- (3) Confirm that the FID analyzer meets all the specifications of §1065.360.
- (4) Start and operate the FID analyzer according to the manufacturer's instructions.
- (5) Zero and span the FID as you would during emission testing. Span the FID by bypassing the cutter and by using C_3H_8 span gas to span the FID. Note that you must span the FID on a C_1 basis. For example, if your span gas has a propane reference value of $100~\mu/$ mol, the correct FID response to that span gas is $300~\mu/$ mol because there are three carbon atoms per C_3H_8 molecule.
- (6) Introduce the \dot{C}_2H_6 analytical gas mixture upstream of the nonmethane cutter.
- (7) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the nonmethane cutter and to account for the analyzer's response.
- (8) While the analyzer measures a stable concentration, record 30 seconds of sampled data. Calculate the arithmetic mean of these data points.
- (9) Reroute the flow path to bypass the nonmethane cutter, introduce the C_2H_6 analytical gas mixture to the bypass, and repeat the steps in paragraphs (e)(7) through (8) of this section.
- (10) Divide the mean C_2H_6 concentration measured through the nonmethane cutter by the mean concentration measured after bypassing the nonmethane cutter. The result is the C_2H_6 penetration fraction, PF_{C2H6} . Use this penetration fraction according to §1065.660 or §1065.665, as applicable.
- (11) Repeat the steps in paragraphs (e)(6) through (10) of this section, but with the CH_4 analytical gas mixture instead of C_2H_6 . The result will be the CH_4 penetration fraction, PF_{CH4} . Use

this penetration fraction according to §1065.660 or §1065.665, as applicable.

EFFECTIVE DATE NOTE: At 73 FR 37310, June 30, 2008, §1065.365 was revised, effective July 7, 2008. For the convenience of the user, the revised text is set forth as follows:

§ 1065.365 Nonmethane cutter penetration fractions.

- (a) Scope and frequency. If you use a FID analyzer and a nonmethane cutter (NMC) to measure methane (CH₄), determine the nonmethane cutter's penetration fractions of methane, PF_{CH4}, and ethane, PF_{C2H6} . As detailed in this section, these penetration fractions may be determined as a combination of NMC penetration fractions and FID analyzer response factors, depending on your particular NMC and FID analyzer configuration. Perform this verification after installing the nonmethane cutter. Repeat this verification within 185 days of testing to verify that the catalytic activity of the cutter has not deteriorated. Note that because nonmethane cutters can deteriorate rapidly and without warning if they are operated outside of certain ranges of gas concentrations and outside of certain temperature ranges, good engineering judgment may dictate that you determine a nonmethane cutter's penetration fractions more frequently.
- (b) Measurement principles. A nonmethane cutter is a heated catalyst that removes nonmethane hydrocarbons from an exhaust sample stream before the FID analyzer measures the remaining hydrocarbon concentration. An ideal nonmethane cutter would have a methane penetration fraction, $PF_{\rm CH4}$, of 1.000, and the penetration fraction for all other nonmethane hydrocarbons would be 0.000, as represented by $PF_{\rm C2H6}$. The emission calculations in §1065.660 use the measured values from this verification to account for less than ideal NMC performance.
- (c) System requirements. We do not limit NMC penetration fractions to a certain range. However, we recommend that you optimize a nonmethane cutter by adjusting its temperature to achieve a $PF_{\text{CH4}} > 0.85$ and a $PF_{\text{C2H6}} < 0.02$, as determined by paragraphs (d), (e), or (f) of this section, as applicable. If we use a nonmethane cutter for testing, it will meet this recommendation. If adjusting NMC temperature does not result in achieving both of these specifications simultaneously, we recommend that you replace the catalyst material. Use the most recently determined penetration values from this section to calculate HC emissions according to § 1065.660 and § 1065.665 as applicable. (d) Procedure for a FID calibrated with the
- (d) Procedure for a FID calibrated with the NMC. The method described in this paragraph (d) is recommended over the procedures specified in paragraphs (e) and (f) of this section. If your FID arrangement is such that a FID is always calibrated to measure

§ 1065.365

 CH_4 with the NMC, then span that FID with the NMC using a CH_4 span gas, set the product of that FID's CH_4 response factor and CH_4 penetration fraction, $\mathit{RFPF}_{CH4[NMC-FID]}$ equal to 1.0 for all emission calculations, and determine its combined ethane (C_2H_6) response factor and penetration fraction, $\mathit{RFPF}_{C2H6[NMC-FID]}$ as follows:

- (1) Select a CH $_4$ gas mixture and a C_2H_6 analytical gas mixture and ensure that both mixtures meet the specifications of §1065.750. Select a CH $_4$ concentration that you would use for spanning the FID during emission testing and select a C_2H_6 concentration that is typical of the peak NMHC concentration expected at the hydrocarbon standard or equal to THC analyzer's span value.
- (2) Start, operate, and optimize the nonmethane cutter according to the manufacturer's instructions, including any temperature optimization.
- (3) Confirm that the FID analyzer meets all the specifications of §1065.360.
- (4) Start and operate the FID analyzer according to the manufacturer's instructions.
- (5) Zero and span the FID with the cutter and use CH_4 span gas to span the FID with the cutter. Note that you must span the FID on a C_1 basis. For example, if your span gas has a CH_4 reference value of $100 \ \mu mol/mol$, the correct FID response to that span gas is $100 \ \mu mol/mol$ because there is one carbon atom per CH_4 molecule.
- (6) Introduce the C₂H₆ analytical gas mixture upstream of the nonmethane cutter.
- (7) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the nonmethane cutter and to account for the analyzer's response.
- (8) While the analyzer measures a stable concentration, record 30 seconds of sampled data. Calculate the arithmetic mean of these data points.
- (9) Divide the mean by the reference value of C_2H_6 , converted to a C_1 basis. The result is the C_2H_6 combined response factor and penetration fraction, $RFPF_{C_2H_6[NMC-FID]}$. Use this combined response factor and penetration fraction and the product of the CH_4 response factor and CH_4 penetration fraction, $RFPF_{CH4[NMC-FID]}$, set to 1.0 in emission calculations according to §1065.660(b)(2)(i) or §1065.665, as applicable.
- (e) Procedure for a FID calibrated with propane, bypassing the NMC. If you use a FID with an NMC that is calibrated with propane, C_3H_8 , by bypassing the NMC, determine its penetration fractions, $PF_{\rm C2H6[NMC-FID]}$ and $PF_{\rm C14[NMC-FID]}$, as follows:
- (1) Select CH_4 and C_2H_6 analytical gas mixtures that meet the specifications of $\S\,1065.750$ with the CH_4 concentration typical of its peak concentration expected at the hydrocarbon standard and the C_2H_6 concentration typical of the peak total hydrocarbon (THC) concentration expected at the hydro-

carbon standard or the THC analyzer span value.

- (2) Start and operate the nonmethane cutter according to the manufacturer's instructions, including any temperature optimization.
- (3) Confirm that the FID analyzer meets all the specifications of $\S 1065.360$.
- (4) Start and operate the FID analyzer according to the manufacturer's instructions.
- (5) Zero and span the FID as you would during emission testing. Span the FID by bypassing the cutter and by using C_3H_8 span gas to span the FID. Note that you must span the FID on a C_1 basis. For example, if your span gas has a propane reference value of $100 \ \mu mol/mol$, the correct FID response to that span gas is $300 \ \mu mol/mol$ because there are three carbon atoms per C_3H_8 molecule.
- (6) Introduce the C₂H₆ analytical gas mixture upstream of the nonmethane cutter at the same point the zero gas was introduced.
- (7) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the nonmethane cutter and to account for the analyzer's response.
- (8) While the analyzer measures a stable concentration, record 30 seconds of sampled data. Calculate the arithmetic mean of these data points.
- (9) Reroute the flow path to bypass the nonmethane cutter, introduce the C_2H_6 analytical gas mixture to the bypass, and repeat the steps in paragraphs (e)(7) through (8) of this section.
- (10) Divide the mean C_2H_6 concentration measured through the nonmethane cutter by the mean concentration measured after bypassing the nonmethane cutter. The result is the C_2H_6 penetration fraction, $PF_{\text{C2H6[NMC-FID]}}$. Use this penetration fraction according to § 1065.660(b) (2) (ii) or § 1065.665, as applicable.
- (11) Repeat the steps in paragraphs (e)(6) through (10) of this section, but with the CH₄ analytical gas mixture instead of C_2H_6 . The result will be the CH₄ penetration fraction, $PF_{\text{CH4[NMC-FID]}}$. Use this penetration fraction according to § 1065.660(b)(2)(ii) or § 1065.665, as applicable.
- (f) Procedure for a FID calibrated with methane, bypassing the NMC. If you use a FID with an NMC that is calibrated with methane, CH₄, by bypassing the NMC, determine its combined ethane (C₂H₆) response factor and penetration fraction, RFPF_{C2H6[NMC-FID]}, as well as its CH₄ penetration fraction, PF_{CH4[NMC-FID]}, as follows:
- (1) Select CH_4 and C_2H_6 analytical gas mixtures that meet the specifications of § 1065.750, with the CH_4 concentration typical of its peak concentration expected at the hydrocarbon standard and the C_2H_6 concentration typical of the peak total hydrocarbon (THC) concentration expected at the hydrocarbon standard or the THC analyzer span value.

Environmental Protection Agency

- (2) Start and operate the nonmethane cutter according to the manufacturer's instructions, including any temperature optimization.
- (3) Confirm that the FID analyzer meets all the specifications of §1065.360.
- (4) Start and operate the FID analyzer according to the manufacturer's instructions.
- (5) Zero and span the FID as you would during emission testing. Span the FID with CH_4 span gas by bypassing the cutter. Note that you must span the FID on a C_1 basis. For example, if your span gas has a methane reference value of 100 μ mol/mol, the correct FID response to that span gas is 100 μ mol/mol because there is one carbon atom per CH_4 molecule.
- (6) Introduce the C_2H_6 analytical gas mixture upstream of the nonmethane cutter at the same point the zero gas was introduced.
- (7) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the nonmethane cutter and to account for the analyzer's response.
- (8) While the analyzer measures a stable concentration, record 30 seconds of sampled data. Calculate the arithmetic mean of these data points.
- (9) Reroute the flow path to bypass the nonmethane cutter, introduce the C_2H_6 analytical gas mixture to the bypass, and repeat the steps in paragraphs (e)(7) and (8) of this section
- (10) Divide the mean C_2H_6 concentration measured through the nonmethane cutter by the mean concentration measured after bypassing the nonmethane cutter. The result is the C_2H_6 combined response factor and penetration fraction, $RFPF_{C2H6[NMC-FID]}$. Use this combined response factor and penetration fraction according to §1065.660(b)(2)(iii) or §1065.665, as applicable.
- (11) Repeat the steps in paragraphs (e)(6) through (10) of this section, but with the CH₄ analytical gas mixture instead of C₂H₆. The result will be the CH₄ penetration fraction, $PFC_{\text{CH4[NMC-FID]}}$. Use this penetration fraction according to §1065.660(b)(2)(iii) or §1065.665, as applicable.

NO_X MEASUREMENTS

§ 1065.370 CLD CO₂ and H₂O quench verification.

- (a) Scope and frequency. If you use a CLD analyzer to measure NO_X , verify the amount of H_2O and CO_2 quench after installing the CLD analyzer and after major maintenance.
- (b) Measurement principles. H_2O and CO_2 can negatively interfere with a CLD's NO_X response by collisional quenching, which inhibits the chemiluminescent reaction that a CLD utilizes to detect NO_X . The calculations

- in \$1065.672 for H_2O quench account for the water vapor in humidified NO span gas. The procedure and the calculations scale the quench results to the water vapor and CO_2 concentrations expected during testing. If the CLD analyzer uses quench compensation algorithms that utilize H_2O and/or CO_2 measurement instruments, use these instruments to measure H_2O and/or CO_2 and evaluate quench with the compensation algorithms applied.
- (c) System requirements. A CLD analyzer must have a combined H_2O and CO_2 quench of $\pm 2\%$ or less, though we strongly recommend a quench of $\pm 1\%$ or less. Combined quench is the sum of the CO_2 quench determined as described in paragraph (d) of this section, plus the H_2O quench determined in paragraph (e) of this section.
- (d) CO_2 quench verification procedure. Use the following method to determine CO_2 quench, or use good engineering judgment to develop a different protocol:
- (1) Use PTFE tubing to make necessary connections.
- (2) Connect a pressure-regulated CO_2 span gas to one of the inlets of a three-way valve made of 300 series stainless steel. Use a CO_2 span gas that meets the specifications of §1065.750 and attempt to use a concentration that is approximately twice the maximum CO_2 concentration expected to enter the CLD sample port during testing, if available.
- (3) Connect a pressure-regulated purified N_2 gas to the valve's other inlet. Use a purified N_2 gas that meets the specifications of §1065.750.
- (4) Connect the valve's single outlet to the balance-gas port of a gas divider that meets the specifications in § 1065.248.
- (5) Connect a pressure-regulated NO span gas to the span-port of the gas divider. Use an NO span gas that meets the specifications of §1065.750. Attempt to use an NO concentration that is approximately twice the maximum NO concentration expected during testing, if available.
- (6) Configure the gas divider such that nearly equal amounts of the span gas and balance gas are blended with each other. Apply viscosity corrections